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Abstract

The extended version of the analytical wall-function (AWF) for rough wall turbulence by Suga et al. [K. Suga, T.J. Craft, H. Iaco-
vides, An analytical wall-function for turbulent flows and heat transfer over rough walls. Int. J. Heat Fluid Flow 27 (2006) 852–866] is
improved for high Prandtl number flows. The original AWF assumes a linear profile of turbulent viscosity near a wall though it is widely
recognised that a theoretically correct cubic profile of the turbulent viscosity is essential for heat transfer of high Prandtl number flows. In
order to predict thermal boundary layer of high Prandtl number fluid flows, the present approach thus employs a correct limiting profile
of the turbulent viscosity in the analytical integration process. The presently proposed version of the AWF proves its good performance
for predicting turbulent high Prandtl number thermal flows at Pr 6 4 � 104 for smooth wall cases, and at least at Pr 6 10 for rough wall
cases.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

If one considers to predict turbulent wall heat transfer of
high Prandtl number (Pr) fluid flows such as cooling oil
and IC engine water-jacket flows, it is essential to analyse
the thermal boundary-layer which is much thinner than
that of the flow boundary-layer. Thus, near-wall modelling
which resolves the viscous sub-layer has been thought to be
essential for high Pr thermal fields. For example, at the
development of a novel turbulent heat flux model applica-
ble to general Pr cases, Rogers et al. [1] supposed correct
near-wall stress distribution and Suga and Abe [2]
employed a low Reynolds number (LRN) nonlinear k � e
model. In the context of eddy diffusivity models, Herrero
et al. [3] applied an LRN k � e model. So and Sommer
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[4] also applied an LRN k � e as well as a near-wall stress
transport models for flows at Pr = 1000.

However, even with the recent development of LRN
heat transfer models, industrial engineers still routinely
make use of classical wall-function approaches. (One of
the main reasons is a high computational cost of the
LRN computation. The difficulty to generate quality
near-wall grids for complex three-dimensional flow fields
such as IC engine water-jacket flows is another serious
problem.) The wall-function strategies most commonly
used assume semi-logarithmic variations of the near-wall
velocity and temperature (e.g. [5]). It is, however, well
known that the reliable performance of those approaches
is so limited into relatively simple flows due to those
assumptions.

In order to provide a more reliable strategy, the Univer-
sity of Manchester group proposed a new scheme [6] where
the near-wall variation of the turbulent viscosity is
assumed, from which the mean flow and energy equations
are analytically integrated over the near-wall control
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Nomenclature

AT, AU, BT, BU integration constants
cp specific heat capacity at constant pressure
c‘, cl model constants
Ch model coefficient
CT sum of the convection and the diffusion terms of

the energy equation
CU sum of the convection and the diffusion terms of

the momentum equation
D channel height
h, h* roughness height, equivalent sand grain rough-

ness height, h
ffiffiffiffiffi
kP
p

=m
h+ roughness Reynolds number: hUs/m
k, kP turbulence energy, k at node P

P pressure or cell center of the wall-adjacent cell
Pr Prandtl number
Prt; Pr1t turbulent Prandtl numbers
qw wall heat flux
Re Reynolds number: UbD/m
Sh source term of the energy equation

Ub, Us, U+ bulk velocity, friction velocity, U/Us

x wall-parallel coordinate
y wall normal coordinate or wall normal distance
yn, yv, yb cell height, viscous sub-layer thicknesses
y+, y* normalised distances: y Us/m, y

ffiffiffiffiffi
kP
p

=m
a, a0 clc‘, aðy�b � y�vÞ=y�3b
aT, ah aPr=Pr1t , aPr/Prt

CU, Ch normalised total viscosity and thermal diffusiv-
ity

dv origin shift
e dissipation rate of k

H, H+ mean temperature, jH � Hwj(qcpUs)/qw

Hw, Hn wall temperature, temperature at the point n

j von Kármán constant: 0.42
l, lt viscosity, turbulent viscosity
m, mt kinematic viscosity, kinematic turbulent viscos-

ity
q fluid density
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volumes. Since this analytical wall-function (AWF) inte-
grates the transport equations, the effects of the pressure
gradient or the heat source term are inherently involved
in the function.

Recently, several studies thus have followed this AWF
approach [7–9]. The present authors [7] first extended the
AWF to include the effects of fine-grain surface roughness
for flow and thermal fields. In the validation tests of several
rough-wall flows, the AWF showed its performance supe-
rior to the standard approach. Its flow and heat transfer
results were comparable to those of the LRN solutions
by a linear or a nonlinear k � e models [10,11].

Although the AWF performs reasonably well at Pr < 1
as shown in Fig. 1, its applicability to higher Pr cases
was not discussed so far. Therefore, this paper focuses on
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Fig. 1. Mean temperature profiles in turbulent smooth channel flows at
Pr < 1.
the improvement of the thermal AWF for high Pr turbu-
lent flows with and without wall roughness.

(Note that in the cases shown in Fig. 1, a constant tur-
bulent Prandtl number, Prt = 0.9, is used for convenience.
However, for lower Pr cases, the direct numerical simula-
tion [12] suggested that Prt was not constant at all and
its level was rather high. There is thus a tendency for the
AWF to underpredict the mean temperature profile, partic-
ularly, at Pr = 0.025. This implies that a functional form
for Prt is desirable for those cases if one requires better
accuracy.)

2. AWF modelling for high Prandtl number flows

2.1. High Pr AWF for smooth wall heat transfer

In the AWF [6], the wall shear stress and heat flux are
obtained through the analytical solution of simplified
near-wall versions of the transport equations for the wall-
parallel momentum and temperature. Using an eddy vis-
cosity concept, those equations can be written as

o

oy�
lCU

oU
oy�

� �
¼ m2

kP

o

ox
ðqUUÞ þ oP

ox

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CU

; ð1Þ

o

oy�
l
Pr

Ch
oH
oy�

� �
¼ m2

kP

o

ox
ðqUHÞ � Sh

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CT

; ð2Þ

where y� � yk1=2
P =m, and kP, y, m, q, P, U, H, Sh, lCU, lCh/

Pr are respectively the turbulence energy at the node P, the
wall normal direction, the kinematic viscosity, the fluid
density, the pressure, the mean wall-parallel velocity com-
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Fig. 3. Near-wall thermal diffusivity distribution.
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ponent, the mean temperature, a heat source, the total vis-
cosity, the total thermal diffusivity. The main assumption
required for the analytical integration of the transport
equations is treating CU and CT are constant. Then, in a
constant property condition, these simplified equations
can be integrated as

l
dU
dy�
¼ CU

y�

CU
þ AU

1

CU
; ð3Þ

lU ¼ CU

Z
y�

CU
dy� þ AU

Z
1

CU
dy� þ BU ; ð4Þ

l
Pr

dH
dy�
¼ CT

y�

Ch
þ AT

1

Ch
; ð5Þ

l
Pr

H ¼ CT

Z
y�

Ch
dy� þ AT

Z
1

Ch
dy� þ BT ; ð6Þ

where AU, BU, AT and BT are integration constants. An-
other important assumption is prescribing the variation
of the turbulent viscosity lt over a wall-adjacent computa-
tional-cell as in Fig. 2. For smooth wall heat transfer, lt

variation is assumed that lt is zero for y� 6 y�v ¼ 10:7 (yv:
the thickness of the viscosity dominated sub-layer) and
then increases linearly:

lt=l ¼ maxf0; aðy� � y�vÞg; ð7Þ
where a = c‘cl = 2.55 � 0.09 and l is the molecular viscos-
ity. Since the theoretical wall-limiting variation of lt is pro-
portional to y3, the AWF does not count a certain amount
of turbulent viscosity in the viscous sub-layer. Despite that,
its effect is not serious for flow field prediction since the
contribution from the molecular viscosity is more signifi-
cant in the sub-layer. This is also true for the thermal field
prediction of fluids whose Pr is less than 1.0. However, in
high Pr fluid flows such as oil flows, since the effect of
the molecular thermal diffusivity (l/Pr) becomes very small
as illustrated in Fig. 3, it is then necessary to consider the
contribution from the turbulent thermal diffusivity inside
the sub-layer. (Note that a prescribed constant turbulent
Prandtl number Prt is assumed in Fig. 3.)
Fig. 2. Near-wall cell arrangement.
In order to compensate the thermal diffusivity inside the
sub-layer, Gerasimov [13] introduced an ad hoc effective
molecular Prandtl number as

Preff ¼
Pr

1þ 0:017Prð1þ 2:9jF e � 1jÞ1:5
; ð8Þ

where Fe is a model function. This effective Pr approach
was tailored for water flows. Thus, its performance in oil
flows whose Pr is over 100 is not guaranteed.

In the present study, such an effective Pr concept is not
considered, correcting the profile of lt to reproduce the
exact wall-limiting behaviour is instead tried. In order to
improve the lt profile inside the sub-layer, it is assumed
that the profile of Eq. (7) is connected to a function:
a0y*3 at the point y�b, as illustrated in Fig. 3.

lt=l ¼
a0y�3 for 0 6 y� 6 y�b;

aðy� � y�vÞ for y�b 6 y�:

(
ð9Þ

Thus,

Ch ¼
1þ a0Pry�3=Prt ¼ Cha for 0 6 y� 6 y�b;

1þ aPrðy� � y�vÞ=Prt ¼ Chb for y�b 6 y�:

(

ð10Þ
By referring to the near-wall profile of lt in a DNS dataset
[14], the value of y�b is optimised as y�b ¼ 11:7 and thus a0 is
obtainable as

a0 ¼ aðy�b � y�vÞ=y�3b ¼ a=y�3b : ð11Þ
Using Eq. (10), integration in Eq. (6) can be made.
(Although the modification of the model is very simple,
its makes the analytical integration a little cumbersome.)
As described in Suga et al. [7] the integration constants
are obtained by applying boundary conditions at the wall,
yb and the point n. The values at n are determined by inter-
polation between the calculated node values at P and N,
whilst at yb a monotonic distribution condition is imposed
by ensuring that H and its gradient should be continuous.
Consequently, the wall heat flux qw can be described as

qw ¼ �
qcpm
Pr

dH
dy

����
w

¼ � qcpm
Pr

k1=2
P

m
dH
dy�

����
w

¼ � qcpk1=2
P AT

l
;

ð12Þ
where cp is the specific heat capacity at constant pressure.
Using coefficients DT and ET, the resultant form of the inte-
gration constant AT can be written as
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Fig. 4. Near-wall cells over a rough wall: (a) yb < 0, (b) 0 6 yb 6 h, (c)
h < yb 6 yn, (d) yn < yb.

4970 K. Suga / International Journal of Heat and Mass Transfer 50 (2007) 4967–4974
AT ¼ flðHn �HwÞ=Pr þ CT ETg=DT ; ð13Þ

where Hw and Hn are the wall temperature and the temper-
ature at yn. In the case of a constant wall heat flux condi-
tion, the wall temperature is obtained by rewriting Eqs.
(12) and (13) as

Hw ¼ Hn þ
Prqw

qcpk1=2
P

DT þ
PrCT ET

l
: ð14Þ

When yb 6 yn, with P2 = 1/Cha, P 02 ¼ 1=Chb, y0 = 0, y1 = yb

and y2 = yn, the coefficients DT and ET are

DT ¼ S2ðy1Þ � S2ðy0Þ þ fS02ðy2Þ � S02ðy1Þg
P 2ðy1Þ
P 02ðy1Þ

; ð15Þ

ET ¼ S1ðy0Þ � S1ðy1Þ þ S01ðy1Þ � S01ðy2Þ

þ fS02ðy1Þ � S02ðy2Þg
P 1ðy1Þ � P 01ðy1Þ

P 02ðy1Þ
; ð16Þ

where P1 = y*P2, P 01 ¼ y�P 02, Si ¼
R

P i dy� and S0i ¼
R

P 0i dy�.
In the case of yn < yb, with y0 = 0, y1 = yn, they are

DT ¼ S2ðy1Þ � S2ðy0Þ; ð17Þ
ET ¼ S1ðy0Þ � S1ðy1Þ: ð18Þ

(See Appendix A for the results of the integration of 1/Cha,
etc.)

2.2. High Pr AWF for rough wall heat transfer

For rough wall heat transfer, Suga et al. [7] assumed a
functional form of Prt in the roughness region of y 6 h

(h: the roughness height) as

Prt ¼ Pr1t þ Ch maxð0; 1� y�=h�Þ; ð19Þ

where Pr1t ¼ 0:9 is used. Although the following form for
Ch was adopted within the roughness elements (y 6 h):

Ch ¼
5:5

1þ ðh�=70Þ6:5
þ 0:6; ð20Þ

it was only validated in air flows.
Therefore, the coefficient Ch needs re-calibration in high

Pr flows and the presently obtained polynomial form is

Ch ¼ maxð0;C3Pr3 þ C2Pr2 þ C1Pr þ C0Þ;

C3 ¼ �0:48=h� þ 0:0013; C2 ¼ 9:90=h� � 0:0291;

C1 ¼ �72:35=h� þ 0:3067; C0 ¼ 98:98=h� þ 0:2103:

ð21Þ

Since the rough wall AWF [7] modifies y�v of Eq. (7) as

y�v ¼ y�vsf1� ðh�=70Þmg ¼ y�vs � dv; ð22Þ

with y�vs ¼ 10:7 and

m ¼ max 0:5� 0:4
h�

70

� �0:7
 !

; 1� 0:79
h�

70

� ��0:28
 !( )

;

ð23Þ
the turbulent viscosity form of Eq. (9) changes to

lt=l ¼
a0ðy� þ dvÞ3 for y� 6 y�b;

aðy� � y�vÞ for y�b < y�:

(
ð24Þ

With the combination of Eqs. (19) and (24), the thermal
diffusivity has the following forms:

Ch ¼
1þ a0Prðy�þdvÞ3

Pr1t þCh maxð0;1�y�=h�Þ ¼ Chc for y� < y�b;

1þ aPrðy��y�v Þ
Pr1t þCh maxð0;1�y�=h�Þ ¼ Chd for y�b 6 y�:

8<
: ð25Þ

The analytical solutions of energy equations then can be
obtained in the four different cases illustrated in Fig. 4
assuming that the wall-adjacent cell height is always greater
than the roughness height. The resultant expressions for qw

and AT are of the same form as those of Eqs. (12)–(14). For
cases (a) and (d) of Fig. 4, DT and ET have the forms of
Eqs. (15) and (16) with some changes. For case (a), they
are P 2 ¼ P 02 ¼ 1=Chd , y0 = 0, y1 = h and y2 = yn. For case
(d), they are P 2 ¼ P 02 ¼ 1=Chc, y0 = 0, y1 = h and y2 = yn.

In cases (b) and (c), DT and ET have the following
forms:

DT ¼ S2ðy1Þ � S2ðy0Þ þ fS02ðy2Þ � S02ðy1Þg
P 2ðy1Þ
P 02ðy1Þ

þ fS002ðy3Þ � S02ðy2Þg
P 2ðy1ÞP 02ðy2Þ
P 02ðy1ÞP 002ðy2Þ

; ð26Þ

ET ¼ S1ðy0Þ � S1ðy1Þ þ S01ðy1Þ � S01ðy2Þ þ fS02ðy1Þ

� S02ðy2Þg
P 1ðy1Þ � P 01ðy1Þ

P 02ðy1Þ
þ S001ðy2Þ � S001ðy3Þ þ fS002ðy2Þ

� S002ðy3Þg
P 1ðy1Þ � P 01ðy1Þ

P 02ðy1Þ
� P
0
2ðy2Þ

P 002ðy2Þ
þ P 01ðy2Þ � P 001ðy2Þ

P 002ðy2Þ

� �
:

ð27Þ
For case (b), P2 = 1/Chc, P 02 ¼ P 002 ¼ 1=Chd , S00i ¼

R
P 00i dy�,

y0 = 0, y1 = yb, y2 = h, and y3 = yn. For case (c),
P 2 ¼ P 02 ¼ 1=Chc, P 002 ¼ 1=Chd , y0 = 0, y1 = h, y2 = yb, and
y3 = yn. (See Appendix A for the results of the integration
of 1/Chc, etc.)

3. Application results

3.1. Smooth wall heat transfer

In order to confirm the effects of the corrected turbulent
viscosity on the flow fields, Fig. 5 compares the mean veloc-
ity profiles in turbulent channel flows at the bulk Reynolds
number, Re = 105. (The standard high Reynolds number
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k � e model [5] and the eddy diffusivity model with
Prt = 0.9 are used for the computation of the core fields
of the present study.) Although the result by the lt correc-
tion almost perfectly lies on the log-law line and there can
be seen a slight discrepancy between the results with and
without the correction, both the results well accord with
the LRN Launder-Sharma (LS) k � e model [10] and the
log-law profiles. (The meshes used for the AWF and the
LRN computations have respectively 50 and 100 node
points in the wall normal direction. Their first cell heights
are y+ ’ 30 and y+ ’ 0.2, respectively.) This confirms that
the correction in the momentum equation may not be
totally necessary for engineering flow field computations
and thus the present study does not employ the correction
for the flow field AWF. This means that the correction of lt

is made only in the energy equation in the present study.
Fig. 6 clearly indicates that without the correction, the

AWF does not properly reproduce the logarithmic temper-
ature profiles in high Pr flows (Pr P 5.0). Note that the
experimentally suggested logarithmic distribution by Kad-
er [15] for a wide range of Pr is

Hþ ¼ 2:12 lnðyþPrÞ þ ð3:85Pr1=3 � 1:3Þ2: ð28Þ
In the case of Pr = 0.71, the profiles of the AWF with and
without the correction are virtually identical and confirm
that the near-wall correction of lt is effective for flows at
Pr > 1.0.
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As shown in Fig. 7a, the corrected AWF proves its good
performance in the range of 50 6 Pr 6 103. However, both
the LRN LS model and the AWF with Gerasimov’s [13]
effective molecular Prandtl number scheme fail to predict
the thermal field at Pr = 500. The former predicts the tem-
perature too high and the latter does too low. Fig. 7b also
confirms that the corrected AWF performs well up to
Pr = 4 � 104 though the LRN LS model predicts the ther-
mal field too high. Note that the same grid resolution as
that for Pr = 5.0 is used in the LRN computations. This
reasonably implies that the grid resolution used is too
coarse and a much finer grid is needed for such a high Pr

computations by the LRN models. Obviously, it highlights
the merit of using the AWF which does not require a finer
grid resolution for a higher Pr flow.
3.2. Rough wall heat transfer

Fig. 8 compares the predicted temperature fields of tur-
bulent rough channel flows of h/D = 0.005, 0.01 and 0.03,
(D: channel height). In the cases of h/D = 0.005, 0.01, the
corresponding roughness Reynolds numbers are respec-
tively h+ ’ 30,60 which are in the transitional roughness
regime, while h/D = 0.03 corresponds to h+ ’ 220 which
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Fig. 8. Mean temperature profiles in turbulent rough channel flows.

4972 K. Suga / International Journal of Heat and Mass Transfer 50 (2007) 4967–4974
is well in the fully rough regime. For each roughness case, it
is obvious that the corrected AWF reasonably well
reproduces the temperature distribution for rough walls
[16]:

Hþ ¼ 1

0:8hþ�0:2Pr�0:44
þ Prt

j
ln

32:6yþ

hþ
; ð29Þ

where Prt = 0.9 and j = 0.418. This correlation is based on
the experiments [17] of Pr = 1.20–5.94 at the order of Re is
104–105. Since experimental data for high Pr rough wall
turbulent heat transfer are limited in the literature (as far
as the author knows), discussions of flows at Pr > 10 have
not been made.
4. Conclusions

The analytical wall-function for thermal fields, which
had been developed for application to problems with
smooth and rough wall air flows, has been extended to
account for the effects of the high fluid Prandtl number
on turbulent heat transfer. The concluding remarks of the
present study are:

(1) By linking to the correct near-wall variation of turbu-
lent viscosity: lt / y3, the improved scheme has pro-
ven its good performance in fully developed turbulent
channel flows over a wide range of Prandtl numbers
up to Pr = 4 � 104, for smooth wall cases.

(2) For flow fields and thermal fields at Pr 6 1, it is not
totally necessary to employ the correct near-wall var-
iation of turbulent viscosity.

(3) For rough wall cases, it is confirmed that the
amended model function of Prt inside roughness ele-
ments enables the AWF to perform well in high Pr

flows at least at Pr 6 10.

Since the base model was validated in a wide range of com-
plex air flow fields, the present model is reasonably thought
to be useful in complex geometries as well. Further tests in
such fields with high Pr fluids, however, should be made in
the future.
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Appendix A

The integrals of the functions areZ
1

Cha
dy� ¼

Z
1

1þ a0Pry�3

Prt

dy� ¼ a
3

1

2
ln

ðy� þ aÞ2

y�2 � ay� þ a2

(

þ
ffiffiffi
3
p

tan�1 2y� � a

a
ffiffiffi
3
p

)
; ð30Þ

Z
y�

Cha
dy� ¼

Z
y�

1þ a0Pry�3

Prt

dy� ¼ a2

3
� 1

2
ln

ðy� þ aÞ2

y�2 � ay� þ a2

(

þ
ffiffiffi
3
p

tan�1 2y� � a

a
ffiffiffi
3
p

)
; ð31Þ

Z
1

Chb
dy� ¼

Z
1

1þ aPrðy��y�v Þ
Prt

dy�

¼ 1

ah
ln j1þ ahðy� � y�vÞj; ð32Þ
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Z
y�

Chb
dy� ¼

Z
y�

1þ aPrðy��y�v Þ
Prt

dy�

¼ y�

ah
� 1� ahy�v

a2
h

ln j1þ ahðy� � y�vÞj; ð33Þ
Z

1

Chd
dy� ¼

Z
1

1þ aPrðy��y�v Þ
Pr1t þCh maxð0;1�y�=h�Þ

dy�

¼ � bT y�

aT � bT
þ bT kb

ðaT � bT Þ
2
þ 1þ bT h�

aT � bT

( )

� ln jðaT � bT Þy� þ kbj; ð34ÞZ
y�

Chd
dy� ¼

Z
y�

1þ aPrðy��y�v Þ
Pr1t þCh maxð0;1�y�=h�Þ

dy�

¼ � bT y�2

2ðaT � bT Þ
þ bT kb

ðaT � bT Þ
2
þ 1þ bT h�

aT � bT

( )
y�

� bT k2
b

ðaT � bT Þ
3
þ kbð1þ bT h�Þ
ðaT � bT Þ

2

( )

� ln jðaT � bT Þy� þ kbj; ð35Þ

where ah = aPr/Prt, aT ¼ aPr=Pr1t , a = (a0Pr/Prt)
�1/3,

bT ¼
Ch=ðPr1t h�Þ for y 6 h;

0 for h < y;

	
kb ¼ 1� bT h� � ay�v . (Note that integration constants are
neglected in the results.)Z

1

Chc
dy� ¼

Z
1

1þ a0Prðy�þdvÞ3
Pr1t þCh maxð0;1�y�=h�Þ

dy�

¼ f
a0T

h
�
n
gcbT � ðga � gbÞð1þ bT h�Þ

� gb

2
1þ bT ½h� þ ga�ð Þ

o
UðyÞ

� 1þ bT ðh� þ gaÞ
2

ln jy�2 þ gby� þ gcj

þ 1þ bT ðh� þ gaÞg ln jy� þ gajf
i
; ð36ÞZ

y�

Chc
dy� ¼

Z
y�

1þ a0Prðy�þdvÞ3
Pr1t þCh maxð0;1�y�=h�Þ

dy�

¼ f
a0T

gcð1þ bT ½h� þ ga�Þ �
gb

2
bT ½gagb � gc�ð

nh

þ ga½1þ bT h��Þ
o
UðyÞ þ 1

2
bT ½gagb � gc�f

þ gað1þ bT h�Þg ln jy�2 þ gby� þ gcj

� gaf1þ bT ðh� þ gaÞg ln jy� þ gaj
i
; ð37Þ
where a0T ¼ a0Pr=Pr1t , p ¼ �bT=ð3a0T Þ, q ¼ f1þ bT ðh� þ
dvÞg=ð2a0T Þ,

n ¼

�qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p3

p
 �1=3

þ �q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p3

p
 �1=3

if q2 þ p3 P 0;

2
ffiffiffiffiffiffiffi�p
p

cos 1
3

cos�1 q
p
ffiffiffiffi�p
p


 �h i
if q2 þ p3 < 0;

8>>>>>>><
>>>>>>>:

ð38Þ

ga = dv � n, gb = 2dv + n, gc ¼ d2
v þ dvnþ n2 þ 3p, f = 1/

{ga(ga � gb) + gc}, and

UðyÞ ¼

� 2
gbþ2y�

if g2
b � 4gc ¼ 0;

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
�g2

b
þ4gc

p tan�1 gbþ2y�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�g2

b
þ4gc

p
� �

if g2
b � 4gc < 0;

2ffiffiffiffiffiffiffiffiffiffi
g2

b
�4gc

p ln
gbþ2y��

ffiffiffiffiffiffiffiffiffiffi
g2

b
�4gc

p

gbþ2y�þ
ffiffiffiffiffiffiffiffiffiffi
g2

b
�4gc

p
����

����
if g2

b � 4gc > 0:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð39Þ
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